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SYNTHESIS OF BERNINAMYCINIC ACID

T. Ross Kelly? Antonio Echavarren, Nizal S. Chandrakumar and Yetkin Koksal
Department of Chemistry, Boston College, Chestnut Hill, MA 02167

Abstract: A short, efficient synthesis of berninamycinic acid (1) is described.
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Berninamycinic acid (1) stands apart as the only known example of the
pyridothiazolopyridinium ring system. First encountered as a degradation product of the cyclic
polypeptide antibiotic berninamycin,2 it is also produced upon exposure of sulfomycin3

and 2 to peptide hydrolysis conditions, but no efforts directed towards the rational
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construction of 1 have been recorded. We now report an expeditious synthesis of this
structurally remarkable molecule which also serves to illustrate the utility of heteroatom
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facilitated lithiation for the fabrication of complex heteroaromatic assemblages (Scheme 1).
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Metalation of 3 with 4 2 equiv of n-Buli in THF (0 C, ca. 1 h) followed by exposure to 2.2
equiv of CH3OCH2N =C=$§ (4) for 1 h at 24°¢C provides 5 in 67% yield. Use of only 1 equiv of 4
(OOC, 15 min) cleanly affords 9 (88%), which is also convertible to 1 (vide infra). The
nature of the metalated species derived from 3 has not been rigorously established, but 10 is

strongly implicated since neither 5 nor 9 is produced if metalation is effected with only 3
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equiv of g;--BuLi..g’9 Condensationloa of 5 with ethyl bromopyruvate yields 6 (94%), presumably
via intermediates such as 11; it is noteworthy that cleavage of the methoxymethylene groupings
occurs spontaneously during the course of the reaction.

While 12 can be similarly elaboratedlob from 9, the thiazole substituent on the amide
nitrogen in 6 serves to prevent that amide grouping from reacting with NO_ and permits
continued differentiation12 of the two carboxyl functions in the convex:.ls:i.onloc’13 of 6 to 7
(92%). Subjection of the latter to a Nierenstein—type14 homologation sequence10d foiIowed—
without isolation by heating in 6 M HClloe affords berninamycinic acid (1) directly, presumably
via intermediates such as 8 . The 1 so obtained is identical with naturally derived materiale
and is produced in an overall yield of 30% based on 3.

In a somewhat longer but more efficient sequence (3+1: 40% overall yield) which is largely
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an exercise in carboxylic acid derivative chemistry, 12 can also be converted to 1 (Eg.1).
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| Xy 2.CH,N, Z 2. CH2N2
——————————h- 1
1 2 3. 6N HC1
R \N R 3 .NOZ
0 0
(Eq.1)
12,R =wn_,R?=NHt-Bu,R=0Et L] d

Z}
i§)R1=R3—0H,R2=NH£fBu
ié}Rl=R3=OMe,R2=NH£fBu

The starting material (3) in Scheme 1 was prepared by two independent routes. The less
direct procedure exploits the susceptibility > of lélog to suffer partial saponification to 17
in high yield. Elaboration of 17 to 3 is straightforwardlol and amenable to large scale
operation (>90%7 overall) but requires several operations. The more direct route utilizes
solid phase synthesis technology16 and affords 3 in a "one-pot" procedure from commercially
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available material. Thus attachment of one of the acid chloride residues of 18 ® to an
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X N Y @—CHzo-Q-CHZOH @—CHZO-@CHZ N X
0 0 0 0
16,X=Y=0Me _
17,X=0Me,Y=0 K 19 20,%=C1
18,X=Y=Cl 21,X=NHt-Bu

hydroxyl group of resin 1_9_17 simultaneously protects the second acid chloride grouping since
its reaction with other polymer-bound nicleophiles is precluded by the spatial constraints
inherent in the tertiary structure of cross-linked polymel:'ii.18 Sequential re&ctionlok of the
now-differentiated carboxyl functions in 20 with t-butylamine (+21) and NH OH affords 3 in
70-80% yield102 based on &.19 ¢
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